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Abstract. Computed tomography angiography (CTA) data sets with-
out hardware based bone subtraction have the disadvantage of contain-
ing the bone structures which particularly overlap with vessel intensi-
ties; therefore vessel segmentation is hampered. Segmentation methods
developed for CTA without bones can not handle these data sets and
manual cerebral vessel segmentation is not realizable in clinical routines.
Therefore, an automatic intensity based cerebral bone removal with sub-
sequent edge based level set vessel segmentation method is presented in
this work. 1

1 Introduction

A continuously increasing incidence of vascular diseases implies a rising quantity
of angiographic data sets (MRA - magnetic resonance angiography, CTA) and
therewith a time consuming evaluation for radiologists and medical scientists.
Manual extraction of vessels in a 3d data set is an arduous and imprecise process.
Therefore, an accurate and automated vessel segmentation method would be a
considerable assistance for clinical diagnosis, quantitative analysis of vascular
diseases and computer-assisted detection (CAD), but designing an automatic
segmentation method for CTA data sets is still a challenging problem due to the
complex structure of the vascular system, noise, gaps in object boundaries and
an overlapping intensity distribution of vessels to other structures.

Using a simple threshold or region growing based technique results in good
vessel segmentations in MRA data sets, though due to by contrast agent en-
hanced vessels an intensity overlap between small bones, cartilage and vessels
occurs, whereby these techniques are inapplicable for CTA data sets. Therefore
bone removal as preprocessing step is indispensable for an explicit background
suppression.

Hardware based methods for bone removal like presented in [7] and their
disadvantages are widely discussed in literature, though only a few approaches
for software based bone masking were introduced [5],[6]. Kanitsar et al.[5] present
a system for peripheral bone removal by dividing the data sets into “slabs”
and filter them with three thresholds subsequent by a connectivity-analysis. In
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normal cases there are no intensities overlaps due to the bone thickness and
they vary only marginal in size, shape and thickness. Therefore, peripheral bone
removal is simplified compared to intra cranial bone segmentation.

Another approach was presented by Kostopoulos et al. [6]. A two level deci-
sion tree was designed: first bones were distinguished from “vessel & parenchyma”
followed by a differentiation between vasculature and parenchyma. The classifica-
tion is based on a manually trained pixel-based classification algorithm. Training
of a classifier algorithm is a tedious and protracted work and an adequate amount
of samples is indispensable. Questionable is a successful training and classifica-
tion for slices containing parts of the skull base, since the paper presents only a
result for slices above the skull base.

Simple methods like thresholds, region growing or edge detection require
homogeneous objects and closed object boundaries what is not given in CTA data
sets. In contrast more complex methods like e.g. statistical models necessitate
extensive apriori knowledge and user interaction. The software based approach
presented in this paper will give reliable results for automatic bone removal in
CTA data sets even in areas around the skull base. Due to the aforementioned
properties of vasculature deformable models are the best choice for the use in
vessel segmentation. Many approaches therefore can be found in literature like
in [1]; [3], but level set based techniques ([8]) offer a multiplicity of advantages,
the most important one being a topology-free representation. In Manniesing et
al. [7] a level set algorithm is used for vessel segmentation with prior hardware
based bone masking. Two intensity based speed functions were constructed for
classifying edges to detect vessels. Using data sets with subtracted bones and
by user placed seed points reduces the complexity for a vessel segmentation
algorithm, in contrast in this work a solution for automatic software based bone
removal subsequent by vessel segmentation is presented.

2 Method

The vessel segmentation method is divided into three steps: 1. bone removal,
2. initial model construction, 3. speed function calculation and level set vessel
segmentation.

2.1 Bone removal

The challenge in CTA bone removal is the intensity overlap of around 200 HU
values of bony structures (200HU up to 4000HU) and contrast enhanced blood
vessels (100-400HU). Especially the area around the skull base contains a multi-
plicity of small bones and cartilage where the intensity overlap reaches its maxi-
mum. Furthermore, vasculature can be located close to bones and be completely
enclosed by them so that their rim potentially disappears. Reducing this be-
haviour is desirable and a requirement for the level set method. The preprocess-
ing is organised in three sub steps: 1. edge enhancement, 2. bone segmentation
and 3. bone masking.
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In the first step we aim to enhance light edges for a simplification of the
distinction between small bones and blood vessels. The edges are enhanced by
morphological gradients which can be manipulated by a structural element (SE)
[9]:

pnSE
B = δnSE

B − ωnSE
B (1)

the δnSE
B describing the dilation with a SE of size n and ωnSE

B defines the
erosion of size n. Afterwards, an area closing filter is applied to fill the areas
inside the bones or vessels.

In the second step the bones are segmented on pnSE
B. For bone segmentation

a classification of three different intensity overlapping types of tissues is required:
vessels, bones or cartilage and background. Using a simple threshold method
results in under-/ or over segmentation due to the intensity overlap. This problem
can be solved by the double threshold technique DBLT [9]. Four threshold values
in two ranges are set: t1 and t4 as the wide range containing all intensities of
the desired object and t2 and t3 forming the narrow range with the overlapping
intensities:

DBLT[t1≤t2≤t3≤t4](f) = RδT[t1,t4](f)
[T[t2,t3](f)], (2)

with f as input and RδT (f) as morphological reconstruction. Bone and rim of
bone voxels can be thereby segmented without affecting the blood vessel voxels.
In the last step, the input is masked with the segmented bones, so that vessels
and background remains.

2.2 Vessel segmentation

The initial model contains blood vessels and small parts of bony structures.
Since no additionally manual placed seed points are used, it is important that
the initial level set contains a rough segmentation of the cerebral vasculature to
guarantee that the level set converges to a accurate solution.

The remaining non-vessel tissue features similar intensity values like the ves-
sel voxels whereby an intensity based level set method is inapplicable and due
to the created explicit object/background classification, an edge based level set
approach was chosen. The level set vessel segmentation is divided in two steps:
1. edge preserving diffusion filtering for noise reduction; 2. Speed function con-
struction and level set calculation.

The canny edge operator has been proven usefully to detect image edges,
even light ones, independent from orientation or thickness. Small vessels and
their rims can be therefore detected, whereby the canny filter the is best choice
for this application and is applied to the diffusion filtered data set for speed
function calculation. Speed functions are commonly build of three terms: the
advection term to regulate the expansion in direction of extracted image features;
the propagation term to control the expansion speed and the curvature term for
a smooth solution. The used speed function was chosen in the following form:

ICanny(t) = −α(DT∇DT )∇ICanny − βDT |∇ICanny|+ εκM |∇ICanny| , (3)
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whereby ICanny represents the canny edge volume, t the time step, DT a distance
transformation, κM a mean curvature and α, β, ε are weighting constants.

The DT inside the advection term regulates the distance between the actual
level set and detected canny edges and represents a stopping criterion. For bridg-
ing gaps the DT is included into the propagation term as well. Starting from
the initial level set the surface expands in the direction of the detected canny
edges, whereupon the speed will be highly reduced at the edges. The propagation
term prevents a leakage of the surface where no edges have been detected and
is therefore, able to link associated vessels. Thus, the rough vessel segmentation
can be optimised.

3 Parametrisation and evaluation

The presented method was evaluated on 6 clinical CTA data sets. Comparison
was restricted to the relevant parts and done on 20-40 slices containing parts of
the jawbones and skull base (jb) and parts of the Circle of Willis (CoW ). For
evaluation 3 CTA sets were manually segmented by an experienced user and 3
data sets were registered to an MRA data set, that was manually segmented by
thresholding. Ground truth is not available for clinical data, therefore manual
segmentation was chosen, though the accuracy is strongly dependent on the user.
In many cases the user segments over the viewable rim of vessels.

The method was implemented with ITK [4] functions and all data sets were
tested with a set of default and optimised parameter values (for parameter de-
tails, see section 2). The optimised values were found within experimental tests.
For preprocessing the size of the structural element (nSE) and the size for the
area closing filter λ have to be set. By default t1, t2, t3 and t4 were set to the
average minimal values for bones (t1 = 250), the average minimal values for bone
boundaries (t2 = 350), the average maximum bone boundary values (t3 = 800)
and the maximum intensity value of each data set (t4 = max(I)). The speed

Modality Preprocessing Canny detection Level set function
nSE λ t1 t2 t3 σ2 thrc α β Iso

CTA 1 (jb) 2 150-360 230-390 290-450 600-800 0.05-0.1 5-50 -3-(-8) -7-(-15) 110-250

CTA 1 (CoW) 3 300-750 250-380 350-550 800-120 0.05-0.08 5-45 -4-(-8) -8-(-15) 127-220
Table 1. Parameter range for preprocessing and level set segmentation on CTA data
sets.

function calculation of the level set segmentation is based on the canny threshold
value thrc

2(controlling the length of the detected edges) and the variance σ2

(size of smoothing filter). The values for σ2 = 0.05 and thrc = 20 were chosen

2 Only the upper threshold has to be set, the lower threshold is automatically set
thrL = thrU/2
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to detect smaller vessels as well. According to a good initial model and a sen-
sitive canny filter the constants α and β were set to -8 and -10. The level set
segmentation is controlled by the number of iterations #It = 100 and in ITK an
iso-surface Iso value has to be set which defines the relevant intensities. With a
default value of 137 even small vessels will be considered. All parameter values
are summarized in table 1.

The dice coefficient and the conformity score [2] were used as evaluation mea-
sures, whereby the conformity score measures the quantity of false segmented
voxels at a fraction of correct segmented voxels. The results are given in table 2.
Visual inspection showed that the majority of vessels were segmented correctly
and only a small amount of bony structures were left (see 1(a) and 1(b)). The
double threshold method worked well for data sets with vessel HU between 200
and 400, finding the suitable threshold values for higher intensities is challeng-
ing. Bones enclosing vessels can be segmented, if vessel and surrounding bone
intensities differ less than 50 HU, vessels were segmented as well. Optimised
parameter values gave in all cases better results due to a higher amount of seg-
mented jawbones and remained vessels.

The arduousness of manual segmentation reduced the evaluation results (see
figure 1(c)). Some segmentation errors were induced by isolated thin bony struc-
tures, due to a high intensity overlap with vessel voxels and a missing connection
to bones. Additionally, diffuse edges occurred in the registered data sets ham-
pers the canny edge detection and the level set expansion. High vessel HU values
caused by stenosis or stents increases the intensity overlap and complicates the
initial model construction (like in CTA 6). The low concordance of CTA 5 is
based on unusual low HU vessel values whereby the reference contains only an
aneurysma.

4 Conclusion

The focus of this work was the development of a reliable bone removal technique
for CTA data sets and a vessel segmentation. This was done by an intensity based
preprocessing using the double threshold operator. The vessel segmentation is
thereby simplified and an edge based level set vessel segmentation is used which
produces good results. The presented method works automatically and by using
the default parameter no user interaction is needed and parameter optimisation
leads to slightly better results. The method can be used for MRA vessel seg-
mentation as well. Automated parameter estimation would be desirable for the

CTA 1 CTA 2 CTA 3 CTA 4 CTA 5 CTA 6 MRA 1
Jb CoW Jb CoW Jb CoW Jb CoW Jb CoW Jb CoW Jb CoW

Dice 50 61 53 70 61 70 46 2,8 12 53 24 42 73 42

Conformity -200 -123 -176 -84 -126 -83 -231 -6800 -1300 -171 -609 -270 -70 -179

Table 2. Evaluation results for optimal parameter in %.
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future. For the removal of isolated small-sized bony structures and the detection
of pathological vessels apriori knowledge or user interaction would be a suitable
method.

(a) Manual segmenta-
tion.

(b) Level set segmenta-
tion.

(c) Comparison of manual and level
set segmentation.

Fig. 1. Comparison of level set and manual segmentation on CTA slices.
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