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Daimler AG, Dept. Environment Perception

Abstract. Vision-based environment perception is particularly challeng-
ing in bad weather. Under such conditions, even most powerful stereo
algorithms suffer from highly correlated, ”blob”-like noise, that is hard
to model. In this paper1 we focus on extending an existing stereo-based
scene representation – the Stixel World – to allow its application even
under problematic conditions. To this end, we estimate the probability
of existence for each detected obstacle. Results show that the amount
of false detections can be reduced significantly by demanding temporal
consistency of the representation and by analyzing cues that represent
the geometry of typical obstacles.

1 Introduction

The importance of stereo image processing in the context of modern driver as-
sistance increases steadily. Depth information is used to detect obstacles in the
driving corridor [5] or to support pedestrian and vehicle classifiers by guiding
the attention to relevant areas in the image [4].

There is no doubt, that for safety critical applications high accuracy and
specificity of depth measurements is of utmost importance, as false detections
can lead to unnecessary emergency maneuvers. At the same time, the range of
stable system operation must be as wide as possible and should cover both well-
conditioned input data and adverse conditions such as darkness, rain, reflections
etc. Some of such typical scenarios a vision system is confronted with in real
world applications are shown in Figure 1.

(a) Mist (b) Darkness (c) Reflections (d) Snow

Fig. 1. Input images under adverse conditions in the automotive context, that only
show a few examples of the high variety of environmental effects

1 Recommended for submission to YRF2012 by Dr. Uwe Franke, Daimler AG
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To maintain a stable mode of operation as often as possible, it is necessary
to explicitly address those situations. Therefore, this contribution focuses on the
typical challenges of an automotive vision system under adverse conditions. To
this end, the Stixel2 representation proposed in [8] is extended to cope with
adverse weather and input conditions by estimating the probability of existence
for each Stixel. The estimation process is performed by analyzing the temporal
and spatial behavior of the extracted Stixel representation.

2 System Overview

In this work, we rely on the semi-global matching (SGM) stereo algorithm in-
troduced in [3]. SGM combines local pixel matching with approximated global
smoothness. Steingrube et. al. [9] show that SGM outperforms other recent stereo
algorithms in terms of detection performance (particularly in bad weather).

From the resulting disparity map, we extract the Stixel representation (see
Figure 2), which provides a compact (∼500 Stixels compared to ∼400.000 pixels)
description of free space and obstacles by means of vertically stacked surfaces.
For our purpose, the central objective of using this representation is that it
performs a spatial regularization of the input data, which already reduces the
impact of strong depth outliers. As a result, we obtain a compact and spatially
smoothed representation of potential obstacles in the depicted scene.

However, at the time of this writing temporal coherence and horizontal (spa-
tial) dependencies are not considered inherently in the Stixel representation.
Under adverse conditions, this leads to so-called phantom Stixels that represent
obstacles, although in fact no real obstacle is present. An analysis conducted
prior to this work by Pfeiffer [6] shows that – under adverse conditions – such
false Stixels pop up spontaneously from time to time (i.e. are temporally uncor-
related) and are spatially small. Some of those phantoms can be seen in the two
example images in the middle of Figure 2, which depicts the general proceeding
of the developed system.

To exploit these findings, we introduce a tracking scheme that allows to re-
move temporally uncorrelated Stixels and perform existence estimation based on
cues that contain knowledge about the geometry of obstacles. In the following
sections, Stixel tracking is discussed briefly and the existence estimation compo-
nent is reviewed in more detail. Section 5 contains an evaluation of the developed
framework and Section 6 ends with a conclusion.

3 Stixel Tracking

In dynamic environments temporal integration requires to track objects of inter-
est to allow correct data association. The tracking component developed in the
context of this work adopts the 6D-Vision principle presented in [2]. This allows
to estimate the velocity and simultaneously improve the 3D world position of

2 Derived from the two words stick and pixel
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Fig. 2. General proceeding with result images for each respective component, applied
to the first image of Figure 1 (best viewed in color)

Stixels (w.r.t. the observing camera) by means of Kalman filters. For our pur-
pose, the filtered information provides a more robust basis for the subsequent
cue computation.

Note that prior to this work, a different Stixel tracking approach has been
presented [7] which also applies the 6D-Vision principle. However, the approach
developed for our purpose allows to track several Stixels per column and retains
the original grid the Stixel representation is given on. These are two properties
required by subsequent analysis steps which are not fulfilled by the tracking
presented in [7]. An example of the tracking result can be seen in Figure 2,
indicated by the arrows at the bottom of Stixels covering the leading vehicle.

To exploit the large area of a Stixel, all optical flow measurements covered
by a Stixel are used to calculate a single robust flow estimate. In our case, we
apply a KLT-based tracking scheme and use the median to determine the flow
result for a Stixel.

4 Existence Estimation

The existence of each Stixel is expressed as the posterior probability of a binary
hypothesis, where ∃ := ”exists” and ∃̄ := ”does not exist” and P (∃̄t | Zt) =
1− P (∃t | Zt). The term Zt = {z0, z1, . . . , zt−1, zt} denotes the set of all frame-
wise measurements (cues) z up to the current time step t. To separate real
obstacles from phantoms, two cues are introduced later in Section 4.1.

To further take into account the temporal context obtained from the tracking
component, the estimation problem is formulated time recursively according to
a Bayes filter. This leads to the typical iteration between prediction (Equation 1)
and update (Equation 2), where P (∃t | Zt) is the sought quantity. The prediction
is performed via a simple transition model, depicted in Figure 3.
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P (∃t | Zt−1) =P (∃t | ∃t−1)P (∃t−1 | Zt−1) +

P (∃t | ∃̄t−1)
[
1− P (∃t−1 | Zt−1)

] (1)

P (∃t | Zt) =
P (zt | ∃t)P (∃k | Zt−1)

P (zt | ∃t)P (∃t | Zt−1) + P (zt | ∃̄t) [1− P (∃t | Zt−1)]
(2)

Fig. 3. Transition model to predict the current probability of existence before it is
updated with new measurements

To avoid frequent label changes, the probability P (∃t | ∃t−1) to remain in
state ∃ is chosen relatively large while the probability P (∃t | ∃̄t−1) that a po-
tential phantom changes to a real obstacle is rather small. However, it is still
more likely than the change from a real obstacle to a phantom, which is a con-
servative and safe assumption. For our experiments we set P (∃t | ∃t−1) = 0.99
and P (∃t | ∃̄t−1) = 0.2. A similar proceeding can also be found in [1], where a
confidence measure for vehicle tracking is proposed.

4.1 Stixel-Wise Cues about Existence

In the following, two cues are introduced. From various cues tested, these two
showed best performance for our purpose. The combination of cues is performed
according to the naive Bayes approach, i.e. all N cues ci are assumed indepen-
dent, such that P (zt | xt) =

∏N
i=1 P (ci,t | xt) with x ∈

{
∃, ∃̄
}

. The two cues are:

Stixel Cluster Size Cue: The Stixel algorithm performs an optimal segmen-
tation of the disparity data along the vertical image axis. As a consequence,
horizontal smoothness is lost in favor of computational efficiency. To regain this
lost information, we perform horizontal region growing on Stixel-level to cluster
Stixels with similar depth and height3. The resulting cue value cCS for each Stixel
is the size of it’s neighborhood region, such that cCS = wcluster×hcluster [m2]. As
the cluster size of phantom Stixels turns out to be rather small, the cue value is
clipped to 1 m2 if it exceeds this value.

3 The stop criteria for region growing correspond to the geometry of typical obstacles
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Stixel Hypothesis Cue: The Stixel algorithm differentiates ground surface
and obstacles by analyzing the progression of the disparity value along the ver-
tical image axis. For the obstacle hypothesis, a constant disparity is assumed
across the whole Stixel. The Stixel hypothesis cue evaluates the two likelihood
functions (outcome of the Stixel optimization algorithm), that encode how well
the disparity data matches both hypotheses. The final cue cSH is chosen as the
posterior probability of the object hypothesis, i.e. normalized to the range [0, 1]
by applying the law of total probability.

For both cue values it applies that a value close to one represents strong ten-
dency towards a real obstacle while a cue value close to zero is more likely to
belong to a phantom Stixel.

5 Evaluation

The detection performance of the proposed approach is presented by means of
a receiver operator characteristic. To generate ground truth, we rely on an au-
tomated labeling strategy that we apply to 16 video sequences with 250 frames
each, recorded under extremely bad conditions. Stixels falling into the unoccu-
pied driving corridor are marked as negative examples (phantoms) and Stixels
covering radar confirmed objects are marked as positive examples (real obsta-
cles). This method of ground truth generation is also applied in [9]. In total we
obtain roughly 12.000 negative and 55.000 positive examples which are split into
a training and a test set.

(a) Cue histograms (b) Detection performance (ROC)

Fig. 4. Distribution of the three cue values for real obstacles and phantoms (a) and
the resulting detection performance shown as ROC curve (b). The term ”age” denotes
temporal filtering here
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The distributions of the introduced cues (see Figure 4 (a)) are learned from
the training set and are then used on the test set to evaluate the existence
probability and generate the ROC curve (see Figure 4 (b)).

The results show, that both cues separate real obstacles from phantoms quite
well. This also shows up in the final ROC result. It can be seen that tem-
porally filtered cues (solid lines) always outperform the single-frame unfiltered
cues (dashed lines) in terms of overall detection performance, which shows the
effectiveness of the tracking component. Best performance with 93 % correctly
classified Stixels is achieved with a combination of cluster size cue, hypothesis
cue and temporal filtering (marked with a circle in Figure 4 (b)).

6 Conclusion

In this paper we showed a possibility to improve the bad weather performance of
the Stixel representation by introducing existence estimation and temporal fil-
tering for each Stixel. The evaluation shows a significant reduction of phantom
Stixels while maintaining the majority of real obstacles. Furthermore, the in-
troduced tracking scheme provides absolute velocity information for each Stixel
that can be used for safety-relevant analysis, such as time-to-collision estimation.
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